跳转到主要内容
首页

Dedicated to discovery

  • 关于 ELGA
    • 关于 ELGA
    • 招贤纳士
    • 活动
  • 支持
    • 实验室规划
  • 联系信息
  • EN
  • DE
  • ES
  • FR
  • IT
  • PT
  • JA
  • EN-US
首页
  • 产品
    • PURELAB
      • PURELAB® Flex
      • PURELAB® Quest
      • PURELAB® Pharma Compliance
      • PURELAB® Chorus 1 Complete
      • PURELAB® Chorus 1
      • PURELAB® Chorus 2
      • PURELAB® Chorus 3
      • PURELAB® Chorus 2 +
    • CENTRA
      • CENTRA® R60/120
      • CENTRA® R200
      • CENTRA® RDS
    • MEDICA
      • MEDICA® 7/15
      • MEDICA® Pro-R & Pro-RE
      • MEDICA® R200
      • MEDICA® EDI 15/30
      • MEDICA® Pro-LPS
      • MEDICA® Pro EDI 60/120
      • MEDICA® BIOX
      • Hubgrade
    • BIOPURE
      • BIOPURE® 300/600
    • PURENERGY 30
    • ELGA 全产品系列
  • 应用
    • 一般实验室用水要求
    • 临床生物化学
    • 免疫化学
    • 分光光度测定法:
    • 原子光谱分析法
    • 微生物分析
    • 气相色谱分析法
    • 液相色谱
      • High Performance Liquid Chromatography
    • 电化学
    • 细胞培养
    • 质谱分析法
    • 遗传学
    • 高效液相色谱 (HPLC)
  • 水纯化技术
    • PureSure
    • 反渗透法
    • 活性碳
    • 电去离子法
    • 离子交换法
    • 紫外线照射法
    • 过滤
  • 水中杂质
    • 微生物和细菌
    • 微粒
    • 无机化合物
    • 有机化合物
    • 溶解气体
  • 知识
    • BROSCHÜREN
    • 博客
    • 案例分析
    • 超纯水
    • 白皮书
  • 如何购买?
  • 联系信息
Home
  • 联系信息
  • 产品
    • PURELAB
      • PURELAB® Flex
      • PURELAB® Quest
      • PURELAB® Pharma Compliance
      • PURELAB® Chorus 1 Complete
      • PURELAB® Chorus 1
      • PURELAB® Chorus 2
      • PURELAB® Chorus 3
      • PURELAB® Chorus 2 +
    • CENTRA
      • CENTRA® R60/120
      • CENTRA® R200
      • CENTRA® RDS
    • MEDICA
      • MEDICA® 7/15
      • MEDICA® Pro-R & Pro-RE
      • MEDICA® R200
      • MEDICA® EDI 15/30
      • MEDICA® Pro-LPS
      • MEDICA® Pro EDI 60/120
      • MEDICA® BIOX
      • Hubgrade
    • BIOPURE
      • BIOPURE® 300/600
    • PURENERGY 30
    • ELGA 全产品系列
  • 应用
    • 一般实验室用水要求
    • 临床生物化学
    • 免疫化学
    • 分光光度测定法:
    • 原子光谱分析法
    • 微生物分析
    • 气相色谱分析法
    • 液相色谱
      • High Performance Liquid Chromatography
    • 电化学
    • 细胞培养
    • 质谱分析法
    • 遗传学
    • 高效液相色谱 (HPLC)
  • 水纯化技术
    • PureSure
    • 反渗透法
    • 活性碳
    • 电去离子法
    • 离子交换法
    • 紫外线照射法
    • 过滤
  • 水中杂质
    • 微生物和细菌
    • 微粒
    • 无机化合物
    • 有机化合物
    • 溶解气体
  • 知识
    • BROSCHÜREN
    • 博客
    • 案例分析
    • 超纯水
    • 白皮书
  • 如何购买?
  • 联系信息
  • 关于 ELGA
    • 关于 ELGA
    • 招贤纳士
    • 活动
  • 支持
    • 实验室规划
  • 联系信息
  • EN
  • DE
  • ES
  • FR
  • IT
  • PT
  • JA
  • EN-US
  • 隐私政策
  • 条款和条件
  • 全球法律合规
  • 专利
  • Trademarks
  • 页面操作员
  • The Analytical Chemistry Of Wine!
Life in The Lab
Cool Science

The Analytical Chemistry Of Wine!

20 2月 2020
- by Dr Paul Whitehead

Group of people toasting wine during a dinner party.

Wine (from Latin vinum) is an alcoholic drink made from fermented grapes. Grapes ferment without the addition of acids, enzymes, water, or other nutrients as yeast consumes some of the sugar in the grapes and turns it to ethanol and carbon dioxide.

Wine has been produced for thousands of years. The earliest chemically attested grape wine was discovered at Hajji Firuz in the north-western Zagros Mountains, ca. 5400 BC. Wine reached the Balkans by c. 4500 BC and was consumed in ancient Greece, Thrace and Rome. Wine has long played a significant role in religion. It was used by both the  Romans and the Greek cult of Dionysus in their Bacchanalia. Red wine was associated with 'blood' by the ancient Egyptians.

Wine is a blend of water, sugar, organic acids, various ions and ethanol along with many other compounds including glycerol, aliphatic and aromatic alcohols, proteins, yeasts and polyphenolics which contribute colour, aroma, flavour and tannins.

Modern winemaking uses a combination of traditional methods of production and up-to-date techniques to optimise processes and ensure quality. Relatively rapid methods of chemical analysis are required for process control. 

Analytical Methods Used To Characterise Wine

More sophisticated chemical analytical methods are used to characterise wine and to investigate fraud.

  • Photometry can be used to monitor the acidity of the wine and monitored by titration. 
  • Glycerol, which contributes to the overall sweetness and “mouthfeel” of wine can be measured by an enzymatic assay. 
  • Acetaldehyde, which is a crucial colour stabiliser and cross-links with anthocyanins to darken the colour, can be measured enzymatically or by LC. 
  • The important preservative, sulphite, can be determined by direct photometry or by flow injection analysis. 
  • Organic acids are well suited to determination by ion chromatography while potential metal contaminants, such as copper, zinc and iron, which can affect shelf-life and taste, can be measured directly by atomic absorption spectrophotometry or ICP-MS or ICP-OES. 
  • Pesticides are measured by GC-MS or LC-MS/MS.
  • GC/MS, used traditionally to detect pesticides, is now a significant technique to augment expert assessment of wine taste.  
Analytical chemistry of wine - three traces


The three traces above show the full scans of samples obtained by solid phase extraction of 10ml wine samples. The technique can detect, among others, volatile phenols which can depreciate quality, geosmine and haloanisoles (linked to the presence of mould) and methoxypyranzines, which are wine maturity markers. In some cases, GC/MS can detect lower levels of contaminants than by taste. An example is shown below for the determination of geosmine.

Analytical chemistry of wine - diagram

The Authentication of Wine Using Analytical Chemistry

The most prevalent type of 'wine fraud' is one where wines are adulterated, usually with the addition of cheaper products. 

For example, colouring agents such as elderberry juice and flavourings such as cinnamon and sweeteners are used to mimic the deep, dark colour and flavours of spices due to the presence of different phenolic compounds found in the skin of the grapes. 

Counterfeiting and the relabeling of inferior and cheaper wines to more expensive brands is another common type of wine fraud.

Detecting 'Wine Fraud' In The Lab

While standard analytical methods such as GC/MS, LC-MS/MS and ICP-MS can provide a detailed analysis of wine compositions which can be used for detection of fraud, stable isotope ratio analysis (SIRA) has been particularly successful for this purpose.

Analytical chemistry of wine - SIRA


Authentication of wine by SIRA is based on the measurement of the ratios of the stable isotopes of carbon (13C/12C), hydrogen (2H/1H), and oxygen (18O/16O) within molecules and between different molecules. The distribution of isotopes in bio-molecules of sugar, organic acids, water, or fermented components like ethanol and glycerol is controlled by different fractionation processes as shown above. 

The results of these processes are stable isotope patterns which are characteristic for a specific year of vintage or geographical origin of a grape or wine. With knowledge of the mechanisms responsible for such patterns, an expert interpretation of stable isotope data concerning authenticity or adulteration is feasible. 
 

Analytical chemistry of wine - table


The table shows the isotope ratios often used to investigate various aspects of wine authentication.  For example, the addition of sucrose from sugar beet before fermentation to boost alcohol content can be detected from the 2H/1H ratio in the methyl and methylene groups in the ethanol in the wine. About 85% of the deuterium in sugar is transferred into the methyl hydrogens while 75% of the deuterium in grape liquid goes into the methylene hydrogens. 

Grape & Geographic Origin Verification Using Analytical Chemistry

These methylene hydrogen atoms are also closely related to the geographic and climatic background of the grapes.
1H-Nuclear Magnetic Resonance (1H-NMR) analysis of wine provides quantitative and highly reproducible information and is therefore well suited to the authentication of wine. The combination of 1H-NMR fingerprinting (profiling) with multivariate analysis (“Wine screener”) has already shown promising results for grape variety verification or other specific issues of authentication like geographic origin. 

In this respect, it is reasonable to use both 1H-NMR and SIRA, e.g. for a cross-validation for specific issues of authentication. 

Say 'Cheers' To Modern Analytical Chemistry!

Clearly, the wine drinker can relax in the knowledge that modern analytical chemistry has been applied extensively in ensuring his drink is as safe and flavoursome as he can expect for what he has paid!


Further reading about the analytical chemistry of winemaking:

http://www.bio-conferences.org/articles/bioconf/pdf/2015/02/bioconf_oiv2015_02020.pdf

 

Dr Paul Whitehead 

After a BA in Chemistry at Oxford University, Paul focused his career on industrial applications of chemistry. He was awarded a PhD at Imperial College, London for developing a microwave-induced-plasma detector for gas chromatography. He spent the first half of his career managing the analytical support team at the Johnson Matthey Research/Technology Centre,specialising in the determination of precious metals and characterising applications such as car-exhaust catalysts and fuel cells. Subsequently, as Laboratory Manager in R&D for ELGA LabWater, he has been involved in introducing and developing the latest water purification technologies. He now acts as a consultant for ELGA.

 

  • 留言咨询
  • 获取报价
  • 预订演示
  • 联系获认证的合作伙伴

留言咨询

在 ELGA LABWATER,我们希望能够为您提供有关我们实验室水纯化产品的精彩优惠和新闻动态。 我们将使用您提供的信息来预测您可能会感兴趣的内容。 我们会慎重处理您的数据,您可在此查阅我们的隐私政策。

ELGA LABWATER 的所有合作伙伴均已通过我们的审慎审核和认证。 为了对您的问题或查询进行回复,我们可能将您的联系详情转发给获认证的合作伙伴,由他们直接与您联系。 您可在此查看我们的获认证业务合作伙伴名单。

如果您希望接收来自 ELGA 及我们获认证合作伙伴的最新动态,请勾选下框: 在此.

是,我希望 ELGA LabWater 及其获认证合作伙伴基于我的联系详情为我发送其最新动态

获取报价

At ELGA LabWater, we have exciting offers and news about our products and services that we hope you’d like to hear about. We will use your information to predict what you might be interested in. We will treat your data with respect and you can find the details in our Privacy Policy.

ELGA LabWater works with a network of Approved Partners. In order to answer your questions or enquiries, we may pass your contact details to an Approved Partner, who may contact you directly. 

I'd like to receive updates from ELGA LabWater & ELGA Approved Partners based on my details.

预订演示

At ELGA LabWater, we have exciting offers and news about our products and services that we hope you’d like to hear about. We will use your information to predict what you might be interested in. We will treat your data with respect and you can find the details in our Privacy Policy.

ELGA LabWater works with a network of Approved Partners. In order to answer your questions or enquiries, we may pass your contact details to an Approved Partner, who may contact you directly. 

I'd like to receive updates from ELGA LabWater & ELGA Approved Partners based on my details.

Call us

Can't find what you are looking for?

Support Number
+44 (0)20 3567 7300
United Kingdom Sales
+44 (0)1628 879 704
United States of America Sales
+1 877-315-3542
France Sales
+33 1 40 83 65 00
China Sales
+86 400-616-8882

 

Elga LabWater 总部

ELGA Labwater英国总部

VWS(UK)Ltd.

Lane End Business Park,Lane End,High Wycombe

HP14 3BY,United Kingdom

ELGA Labwater中国总部

威立雅水处理技术(上海)有限公司

地址 : 上海市浦东新区张东路1761号5号楼
电话 : 021 - 38172288
传真 : 021 - 38172289
邮编 : 201210

案例研究

  • 雅培诊断
  • DASA 医学诊断
  • NeoDIN 医学研究所
  • 北斯塔福德郡 NHS 信托大学医院
  • Olsberg 职业技术学院

学习资源

  • 了解超纯水
  • 白皮书
  • 水纯化技术
  • 实验室应用
  • 水中杂质
  • Latest Blog
  • Water Purity - Different Types of Pure Water
  • What is Clinical Laboratory Reagent Water (CLSI)?
  • What is Total Organic Carbon (TOC)?

© VWS (UK) Ltd. 以 ELGA®LabWater 的名义经营业务。2024- 保留所有权利
ELGA 是 Veolia 旗下全球实验室用水品牌。

  • 隐私政策
  • 条款和条件
  • 全球法律合规
  • 专利
  • Trademarks
  • 页面操作员
  • 语言
    • Deutsch
    • English
    • Español
    • Français
    • Italiano
    • Português
    • 日本語
    • 中文
  • Veolia 其他站点
    • Veolia
    • Veolia Foundation
    • Veolia Water Technologies
Elga Veolia
TOP

© 2017 ELGA Veolia