跳转到主要内容
首页

Dedicated to discovery

  • 关于 ELGA
    • 关于 ELGA
    • 招贤纳士
    • 活动
  • 支持
    • 实验室规划
  • 联系信息
  • EN
  • DE
  • ES
  • FR
  • IT
  • PT
  • JA
  • EN-US
首页
  • 产品
    • PURELAB
      • PURELAB® Flex
      • PURELAB® Quest
      • PURELAB® Pharma Compliance
      • PURELAB® Chorus 1 Complete
      • PURELAB® Chorus 1
      • PURELAB® Chorus 2
      • PURELAB® Chorus 3
      • PURELAB® Chorus 2 +
    • CENTRA
      • CENTRA® R60/120
      • CENTRA® R200
      • CENTRA® RDS
    • MEDICA
      • MEDICA® 7/15
      • MEDICA® Pro-R & Pro-RE
      • MEDICA® R200
      • MEDICA® EDI 15/30
      • MEDICA® Pro-LPS
      • MEDICA® Pro EDI 60/120
      • MEDICA® BIOX
      • Hubgrade
    • BIOPURE
      • BIOPURE® 300/600
    • PURENERGY 30
    • ELGA 全产品系列
  • 应用
    • 一般实验室用水要求
    • 临床生物化学
    • 免疫化学
    • 分光光度测定法:
    • 原子光谱分析法
    • 微生物分析
    • 气相色谱分析法
    • 液相色谱
      • High Performance Liquid Chromatography
    • 电化学
    • 细胞培养
    • 质谱分析法
    • 遗传学
    • 高效液相色谱 (HPLC)
  • 水纯化技术
    • PureSure
    • 反渗透法
    • 活性碳
    • 电去离子法
    • 离子交换法
    • 紫外线照射法
    • 过滤
  • 水中杂质
    • 微生物和细菌
    • 微粒
    • 无机化合物
    • 有机化合物
    • 溶解气体
  • 知识
    • BROSCHÜREN
    • 博客
    • 案例分析
    • 超纯水
    • 白皮书
  • 如何购买?
  • 联系信息
Home
  • 联系信息
  • 产品
    • PURELAB
      • PURELAB® Flex
      • PURELAB® Quest
      • PURELAB® Pharma Compliance
      • PURELAB® Chorus 1 Complete
      • PURELAB® Chorus 1
      • PURELAB® Chorus 2
      • PURELAB® Chorus 3
      • PURELAB® Chorus 2 +
    • CENTRA
      • CENTRA® R60/120
      • CENTRA® R200
      • CENTRA® RDS
    • MEDICA
      • MEDICA® 7/15
      • MEDICA® Pro-R & Pro-RE
      • MEDICA® R200
      • MEDICA® EDI 15/30
      • MEDICA® Pro-LPS
      • MEDICA® Pro EDI 60/120
      • MEDICA® BIOX
      • Hubgrade
    • BIOPURE
      • BIOPURE® 300/600
    • PURENERGY 30
    • ELGA 全产品系列
  • 应用
    • 一般实验室用水要求
    • 临床生物化学
    • 免疫化学
    • 分光光度测定法:
    • 原子光谱分析法
    • 微生物分析
    • 气相色谱分析法
    • 液相色谱
      • High Performance Liquid Chromatography
    • 电化学
    • 细胞培养
    • 质谱分析法
    • 遗传学
    • 高效液相色谱 (HPLC)
  • 水纯化技术
    • PureSure
    • 反渗透法
    • 活性碳
    • 电去离子法
    • 离子交换法
    • 紫外线照射法
    • 过滤
  • 水中杂质
    • 微生物和细菌
    • 微粒
    • 无机化合物
    • 有机化合物
    • 溶解气体
  • 知识
    • BROSCHÜREN
    • 博客
    • 案例分析
    • 超纯水
    • 白皮书
  • 如何购买?
  • 联系信息
  • 关于 ELGA
    • 关于 ELGA
    • 招贤纳士
    • 活动
  • 支持
    • 实验室规划
  • 联系信息
  • EN
  • DE
  • ES
  • FR
  • IT
  • PT
  • JA
  • EN-US
  • 隐私政策
  • 条款和条件
  • 全球法律合规
  • 专利
  • Trademarks
  • 页面操作员
  • Ensuring High Performance of Sensitive Laboratory Equipment
Water Purity
Analytical Chemistry

Ensuring High Performance of Sensitive Laboratory Equipment

27 2月 2020
- by Dr Paul Whitehead

In a Secure High Level Laboratory Scientists in a Coverall Conducting a Research. Biologist Adjusts Samples in a Petri Dish with Pincers and Examines Them Under Microscope and His Colleague Analyzes Results on a Computer.

Purified Water – Providing the Right Purity is Critical in this Key Reagent for Laboratory Equipment

Chemical and Analytical lab instruments are very dependent on the quality and reliability of the lab supplies available. In particular, the impurities in the purified water used will have a critical effect on laboratory equipment performance.  Clearly, different techniques vary in their sensitivity to water purity. Many of the issues are straightforwardly predictable e.g. if you plan to measure trace sodium, negligibly low concentrations of sodium in your pure water would be a very good idea. 

However, others are less obvious: when counting bacteria, bacteria-free water would also be obviously helpful but the organic content of the water can also markedly affect growth rates and so alter the number of countable colonies. Similarly, in ICP-MS for trace metal determination, organics in the water can seriously interfere with the results. 

The table below gives general indications of the significance of the main categories of water impurities for a number of lab instruments and other lab techniques.

Table: Water Quality For Laboratory Equipment
Table: Water Quality For Laboratory Equipment



Application sensitivity refers to the concentration of the analyte being measured: typically high sensitivity = ppb or lower, medium = ppb to ppm and low = ppm or higher. The data in the table is taken from “ISPE Baseline Pharmaceutical Engineering Guide, Volume 4, Water and Steam Systems, 2011”. Numeric impurity values are not given due to the variation in water purity needed within any one type of application.

Ensuring Your Supply of Purified Water Will Continue To Meet Your Lab Instrument Needs

The impurities in the lab supply of purified water will have a critical effect on laboratory equipment performance. It is, therefore, essential to install a lab supply that provides water with low enough impurity levels, to maintain it correctly and to monitor it to ensure that the water purification equipment is working correctly. 

You should look to install a system that is designed to be robust:

1)    is resistant to known issues such as bacterial growth
2)    will effectively and rapidly detect changes in organic and ionic contamination and  
3)    will effectively and rapidly detect the need to change purification media.  

Robustness is a feature of laboratory equipment design. Bacterial control can be achieved using a 0.2-micron point-of-use (POU) filter but relying on such a filter alone is not robust. 

Bacterial contamination can build up within the unit and the filter can become overloaded or fail unpredictably ruining laboratory experiments using the water for preparation or testing.

A robust water purification system design will incorporate some or all of the following: carbon filtration and reverse osmosis to reduce the overall level of organic and bacterial contamination, recirculation to minimize static water and the growth of biofilm, exposure to 254nm UV light to deactivate residual bacteria and, finally if needed, a POU filter.  

Such a system should also be easy to sanitize if required. This is, clearly, more complicated and more expensive but, ultimately, much more reliable and will also minimize levels of endotoxin and nuclease.

Unlike bacterial contamination, the presence of ionic and organic impurities can be monitored easily online. Electrical conductivity provides a continuous and straightforward indication of total contamination from ions at levels above about 1ppb. 

Total organic contamination can also be monitored down to <1ppb C by on-line TOC. However, unlike conductivity cells, TOC monitors differ in their modes of operation and it is essential to use one with a rapid response time.

Contamination in purified water can build up over time, e.g. due to biofilm growth, or rapidly due, for example, to release of weakly bound organic or ionic species from over-loaded purification media or the loss of a purification process due to a UV lamp or filter failure.

The objective of monitoring is not to check that the contaminants are at a low enough level to be used in any particular lab experiment or analysis; it is to check that the water purifier is working normally i.e. that the purity parameters of conductivity and TOC are normal.

If they have deteriorated then there could be an issue and it needs to be investigated before more water is used. 

A  Lab Supply of Purified Water – As Much or as Little as You Need

Lab supplies of purified water are available in a variety of quantities and qualities, from ultrapure water to biopure. The type of water purifier required is dictated by the applications, the types of laboratory equipment being used, regulatory requirements, e.g. the US or European Pharmacopeia, and the proportions of different water purities needed. 

With a single piece of laboratory equipment requiring high purity water, the choice is likely to be between a single dedicated stand-alone unit supplied with mains water and suitably designated or verified bottled water. 

Most labs these days have a number of laboratory instruments and scientific applications requiring the supply of much larger quantities of purified water, often with different purities. 

There are, then, a number of choices available. If you have the luxury of a new building being built, then, you can consider all the options; in other cases, practicalities and costs will restrict choice:

1)    A “central” purification system with a permanent distribution system to the entire building
2)    One or more semi-localized purification systems with local distribution loop to a lab or floor
3)    Small purification system with local storage and loop
4)    Individual point-of-use units supplied with mains water
5)    An extension of a distribution system used for another purpose, such as manufacturing
6)    Water polishers or dispensers fed from any of these.

Of the first four general options, Option 1 offers advantages of scale and central monitoring but is less flexible to meet changes in application and the site supply is vulnerable to system break-down. It is most suitable where an equivalent water quality is required in a variety of locations. On-going maintenance requires the availability of a trained technician.

Options 2 and 3 maintain some advantages of scale, are more flexible and if one system goes down water may be sourced from another system. They also have the possibility of circulating the lower level of water purity needed, say for glass-washing, and using this to supply polishers for those lab instruments requiring higher purities. Lab staff can be trained to carry out routine maintenance.

Option 4 is the most flexible option; it is easiest to adapt to changes and different units can be used for different applications. It is also the easiest to install. Common consumables can offset the cost of multiple units. Users can take responsibility for routine checks and consumable replacement with the advantage of local “ownership”. There are a number of sites with over 50 such POU units.

The above choices are real viable alternatives and give the user plenty of opportunities to ensure the highest quality of water is used in their sensitive laboratory equipment.

Find out more about ELGA’s Laboratory Water Purification Systems and how they can ensure the high performance of your laboratory equipment

 

Dr Paul Whitehead 

After a BA in Chemistry at Oxford University, Paul focused his career on industrial applications of chemistry. He was awarded a PhD at Imperial College, London for developing a microwave-induced-plasma detector for gas chromatography. He spent the first half of his career managing the analytical support team at the Johnson Matthey Research/Technology Centre,specialising in the determination of precious metals and characterising applications such as car-exhaust catalysts and fuel cells. Subsequently, as Laboratory Manager in R&D for ELGA LabWater, he has been involved in introducing and developing the latest water purification technologies. He now acts as a consultant for ELGA.

  • 留言咨询
  • 获取报价
  • 预订演示
  • 联系获认证的合作伙伴

留言咨询

在 ELGA LABWATER,我们希望能够为您提供有关我们实验室水纯化产品的精彩优惠和新闻动态。 我们将使用您提供的信息来预测您可能会感兴趣的内容。 我们会慎重处理您的数据,您可在此查阅我们的隐私政策。

ELGA LABWATER 的所有合作伙伴均已通过我们的审慎审核和认证。 为了对您的问题或查询进行回复,我们可能将您的联系详情转发给获认证的合作伙伴,由他们直接与您联系。 您可在此查看我们的获认证业务合作伙伴名单。

如果您希望接收来自 ELGA 及我们获认证合作伙伴的最新动态,请勾选下框: 在此.

是,我希望 ELGA LabWater 及其获认证合作伙伴基于我的联系详情为我发送其最新动态

获取报价

At ELGA LabWater, we have exciting offers and news about our products and services that we hope you’d like to hear about. We will use your information to predict what you might be interested in. We will treat your data with respect and you can find the details in our Privacy Policy.

ELGA LabWater works with a network of Approved Partners. In order to answer your questions or enquiries, we may pass your contact details to an Approved Partner, who may contact you directly. 

I'd like to receive updates from ELGA LabWater & ELGA Approved Partners based on my details.

预订演示

At ELGA LabWater, we have exciting offers and news about our products and services that we hope you’d like to hear about. We will use your information to predict what you might be interested in. We will treat your data with respect and you can find the details in our Privacy Policy.

ELGA LabWater works with a network of Approved Partners. In order to answer your questions or enquiries, we may pass your contact details to an Approved Partner, who may contact you directly. 

I'd like to receive updates from ELGA LabWater & ELGA Approved Partners based on my details.

Call us

Can't find what you are looking for?

Support Number
+44 (0)20 3567 7300
United Kingdom Sales
+44 (0)1628 879 704
United States of America Sales
+1 877-315-3542
France Sales
+33 1 40 83 65 00
China Sales
+86 400-616-8882

 

Elga LabWater 总部

ELGA Labwater英国总部

VWS(UK)Ltd.

Lane End Business Park,Lane End,High Wycombe

HP14 3BY,United Kingdom

ELGA Labwater中国总部

威立雅水处理技术(上海)有限公司

地址 : 上海市浦东新区张东路1761号5号楼
电话 : 021 - 38172288
传真 : 021 - 38172289
邮编 : 201210

案例研究

  • 雅培诊断
  • DASA 医学诊断
  • NeoDIN 医学研究所
  • 北斯塔福德郡 NHS 信托大学医院
  • Olsberg 职业技术学院

学习资源

  • 了解超纯水
  • 白皮书
  • 水纯化技术
  • 实验室应用
  • 水中杂质
  • Latest Blog
  • Water Purity - Different Types of Pure Water
  • What is Clinical Laboratory Reagent Water (CLSI)?
  • What is Total Organic Carbon (TOC)?

© VWS (UK) Ltd. 以 ELGA®LabWater 的名义经营业务。2025- 保留所有权利
ELGA 是 Veolia 旗下全球实验室用水品牌。

备案号:沪ICP备20001142号-1

  • 隐私政策
  • 条款和条件
  • 全球法律合规
  • 专利
  • Trademarks
  • 页面操作员
  • 语言
    • Deutsch
    • English
    • Español
    • Français
    • Italiano
    • Português
    • 日本語
    • 中文
  • Veolia 其他站点
    • Veolia
    • Veolia Foundation
    • Veolia Water Technologies
Elga Veolia
TOP

© 2017 ELGA Veolia