跳转到主要内容
首页

Dedicated to discovery

  • 关于 ELGA
    • 关于 ELGA
    • 招贤纳士
    • 活动
  • 支持
    • 实验室规划
  • 联系信息
  • EN
  • DE
  • ES
  • FR
  • IT
  • PT
  • JA
  • EN-US
首页
  • 产品
    • PURELAB
      • PURELAB® Flex
      • PURELAB® Quest
      • PURELAB® Pharma Compliance
      • PURELAB® Chorus 1 Complete
      • PURELAB® Chorus 1
      • PURELAB® Chorus 2
      • PURELAB® Chorus 3
      • PURELAB® Chorus 2 +
    • CENTRA
      • CENTRA® R60/120
      • CENTRA® R200
      • CENTRA® RDS
    • MEDICA
      • MEDICA® 7/15
      • MEDICA® Pro-R & Pro-RE
      • MEDICA® R200
      • MEDICA® EDI 15/30
      • MEDICA® Pro-LPS
      • MEDICA® Pro EDI 60/120
      • MEDICA® BIOX
      • Hubgrade
    • BIOPURE
      • BIOPURE® 300/600
    • PURENERGY 30
    • ELGA 全产品系列
  • 应用
    • 一般实验室用水要求
    • 临床生物化学
    • 免疫化学
    • 分光光度测定法:
    • 原子光谱分析法
    • 微生物分析
    • 气相色谱分析法
    • 液相色谱
      • High Performance Liquid Chromatography
    • 电化学
    • 细胞培养
    • 质谱分析法
    • 遗传学
    • 高效液相色谱 (HPLC)
  • 水纯化技术
    • PureSure
    • 反渗透法
    • 活性碳
    • 电去离子法
    • 离子交换法
    • 紫外线照射法
    • 过滤
  • 水中杂质
    • 微生物和细菌
    • 微粒
    • 无机化合物
    • 有机化合物
    • 溶解气体
  • 知识
    • BROSCHÜREN
    • 博客
    • 案例分析
    • 超纯水
    • 白皮书
  • 如何购买?
  • 联系信息
Home
  • 联系信息
  • 产品
    • PURELAB
      • PURELAB® Flex
      • PURELAB® Quest
      • PURELAB® Pharma Compliance
      • PURELAB® Chorus 1 Complete
      • PURELAB® Chorus 1
      • PURELAB® Chorus 2
      • PURELAB® Chorus 3
      • PURELAB® Chorus 2 +
    • CENTRA
      • CENTRA® R60/120
      • CENTRA® R200
      • CENTRA® RDS
    • MEDICA
      • MEDICA® 7/15
      • MEDICA® Pro-R & Pro-RE
      • MEDICA® R200
      • MEDICA® EDI 15/30
      • MEDICA® Pro-LPS
      • MEDICA® Pro EDI 60/120
      • MEDICA® BIOX
      • Hubgrade
    • BIOPURE
      • BIOPURE® 300/600
    • PURENERGY 30
    • ELGA 全产品系列
  • 应用
    • 一般实验室用水要求
    • 临床生物化学
    • 免疫化学
    • 分光光度测定法:
    • 原子光谱分析法
    • 微生物分析
    • 气相色谱分析法
    • 液相色谱
      • High Performance Liquid Chromatography
    • 电化学
    • 细胞培养
    • 质谱分析法
    • 遗传学
    • 高效液相色谱 (HPLC)
  • 水纯化技术
    • PureSure
    • 反渗透法
    • 活性碳
    • 电去离子法
    • 离子交换法
    • 紫外线照射法
    • 过滤
  • 水中杂质
    • 微生物和细菌
    • 微粒
    • 无机化合物
    • 有机化合物
    • 溶解气体
  • 知识
    • BROSCHÜREN
    • 博客
    • 案例分析
    • 超纯水
    • 白皮书
  • 如何购买?
  • 联系信息
  • 关于 ELGA
    • 关于 ELGA
    • 招贤纳士
    • 活动
  • 支持
    • 实验室规划
  • 联系信息
  • EN
  • DE
  • ES
  • FR
  • IT
  • PT
  • JA
  • EN-US
  • 隐私政策
  • 条款和条件
  • 全球法律合规
  • 专利
  • Trademarks
  • 页面操作员
  • Water-Soluble Organic Carbon in Snow and Ice
Analytical Chemistry
Environment & Sustainability

Water-Soluble Organic Carbon in Snow and Ice

7 2月 2022
- by ELGA Editorial Team

French Alps

Organic matter is prevalent in today’s atmosphere over different continents, but its source is still poorly known.

Studying organic material trapped in ice cores is one way to understand this better. Researchers at the Arctic and Antarctic Research Institute in St Petersburg, Russia, and the Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE) in Grenoble, France, have investigated this by reviewing the available data and conducting analyses on the dissolved or total organic carbon (DOC or TOC) content in snow and ice from Antarctic, Greenland, and Alpine ice cores.

Carbonaceous matter – elemental (EC) or black carbon (BC), and organic carbon (OC) – is recognised as a major constituent of the present-day atmospheric aerosol load over continents, but there is still not enough knowledge of its origins. OC accounts for approximately 75 % of continental atmosphere aerosol. Of this, there are more water-soluble than water-insoluble fractions of OC (WSOC and WinOC respectively). The chemical nature of gaseous precursors and the mechanisms involved are not well known either, and so atmospheric OC aerosol concentrations are underestimated. 

The variability and contributions of natural (for example, vegetation emissions) and anthropogenic sources (such as fossil fuel combustion) to OC aerosol in our changing atmosphere, from the pre-industrial era to the present day, can – to some extent – be highlighted by snow and ice core studies. However, no critical review had been conducted to understand the causes of the large differences in DOC or TOC content between snow and ice. Researchers at the Arctic and Antarctic Research Institute and the LGGE thoroughly examined the available data and completed their own data set by analysing selected samples from Antarctic, Greenland, and Alpine ice cores.1

Sample Preparation and Analysis

The snow sampling was done using a glass scraper that had previously been washed with ELGA® ultrapure water of resistivity of 18.2 MΩ/cm, prepared using a PURELAB system. Airtight glass bottles, cleaned by rinsing several times with ELGA water, were used to collect the snow samples. Atmospheric WSOC aerosol samples were collected over a year from a set of high-volume filters at Concordia, located on the high East Antarctic Plateau. To reduce contamination by organic material, each filter was extracted with ELGA water.

An automated TOC analyser – with a modified UV persulfate method – was used for the precise analysis of small sample volumes to quantify the DOC or TOC content and ions in aerosol, polar ice sheet, surface snow and snow pit samples from Antarctica and Greenland, as well as at a high-elevated site in the French Alps. This, combined with following a detailed sampling protocol, helped to eliminate any inconsistencies in results. Any inorganic carbon (dissolved CO2, HCO3−, and CO32−) was removed in an inorganic carbon cell before the liquid sample was transferred to a UV reactor cell. The organic carbon was oxidised to CO2, which was then detected by non-dispersive infrared (NDIR) analysis. Ancillary chemical analysis was also conducted to detect a range of cations and anions present in the samples. 

The Results

The review of the available data found that the large inconsistencies were related to contamination problems during sampling and storage of snow, as well as degradation of the ice quality. The different methods – UV and combustion – in oxidising insoluble OC material present in samples did not contribute to this. The data revealed that the typical annual pre-industrial DOC ice content is between 5-10 parts per billion as carbon (ppbC) in Antarctica, 20 ppbC in Greenland, and 70 ppbC in the Alps. C1-C3 monocarboxylic acids and formaldehyde represent the most important water-soluble atmospheric organic gases that contribute to the OC content of ice. C2-C5 dicarboxylic acids, humic-like substances, and sometimes methanesulfonate were found to contribute to the WSOC quantity, but a large fraction of the WSOC was not chemically identified.

The Alpine OC was found to be three times higher in the 1970s and 1980s compared to before World War II, but a major fraction of WSOC is biogenic in origin. The increased biogenic emissions of atmospheric WSOC are a result of warmer temperatures, higher atmospheric CO2, and enhanced oxidative capacity of the atmosphere. The increasing trend of OC in Greenland, on the other hand, is explained by the level in pre-industrial ice and, in recent years, the levels in the snow collected. The Antarctic data collected suggest a significantly lower level of OC during the Ice Age compared to the Holocene, which is explained by the decreased continental biogenic emission during colder and drier conditions.

Future Applications

The improved protocols for sampling and analysis in this study can be applied for future investigations to better quantify organic carbon in snow and ice, as well as in other materials, but also emissions in different locations around the world. This will give scientists a better insight into the different sources and their relative contributions to the changes in our environment and the atmosphere.

Why Choose ELGA LabWater in France?

The presence of impurities in laboratory water can be a major problem in research experiments, and can seriously compromise results. ELGA LabWater has been a trusted name in pure and ultrapure water since 1937. We believe in providing you with water purification solutions that can meet a wide range of needs and applications, backed by excellent service and support. For more information on our Type I ultrapure water systems, check out our PURELAB Quest, PURELAB Chorus 1 Complete and our PURELAB flex models.

Contact our French partners today! 

Reference:
1- Legrand, M et al. 2013. Water-soluble organic carbon in snow and ice deposited at Alpine, Greenland, and Antarctic sites: a critical review of available data and their atmospheric relevance. Clim Past 9(5):2195-2211.

 

  • 留言咨询
  • 获取报价
  • 预订演示
  • 联系获认证的合作伙伴

留言咨询

在 ELGA LABWATER,我们希望能够为您提供有关我们实验室水纯化产品的精彩优惠和新闻动态。 我们将使用您提供的信息来预测您可能会感兴趣的内容。 我们会慎重处理您的数据,您可在此查阅我们的隐私政策。

ELGA LABWATER 的所有合作伙伴均已通过我们的审慎审核和认证。 为了对您的问题或查询进行回复,我们可能将您的联系详情转发给获认证的合作伙伴,由他们直接与您联系。 您可在此查看我们的获认证业务合作伙伴名单。

如果您希望接收来自 ELGA 及我们获认证合作伙伴的最新动态,请勾选下框: 在此.

是,我希望 ELGA LabWater 及其获认证合作伙伴基于我的联系详情为我发送其最新动态

获取报价

At ELGA LabWater, we have exciting offers and news about our products and services that we hope you’d like to hear about. We will use your information to predict what you might be interested in. We will treat your data with respect and you can find the details in our Privacy Policy.

ELGA LabWater works with a network of Approved Partners. In order to answer your questions or enquiries, we may pass your contact details to an Approved Partner, who may contact you directly. 

I'd like to receive updates from ELGA LabWater & ELGA Approved Partners based on my details.

预订演示

At ELGA LabWater, we have exciting offers and news about our products and services that we hope you’d like to hear about. We will use your information to predict what you might be interested in. We will treat your data with respect and you can find the details in our Privacy Policy.

ELGA LabWater works with a network of Approved Partners. In order to answer your questions or enquiries, we may pass your contact details to an Approved Partner, who may contact you directly. 

I'd like to receive updates from ELGA LabWater & ELGA Approved Partners based on my details.

Call us

Can't find what you are looking for?

Support Number
+44 (0)20 3567 7300
United Kingdom Sales
+44 (0)1628 879 704
United States of America Sales
+1 877-315-3542
France Sales
+33 1 40 83 65 00
China Sales
+86 400-616-8882

 

Elga LabWater 总部

ELGA Labwater英国总部

VWS(UK)Ltd.

Lane End Business Park,Lane End,High Wycombe

HP14 3BY,United Kingdom

ELGA Labwater中国总部

威立雅水处理技术(上海)有限公司

地址 : 上海市浦东新区张东路1761号5号楼
电话 : 021 - 38172288
传真 : 021 - 38172289
邮编 : 201210

案例研究

  • 雅培诊断
  • DASA 医学诊断
  • NeoDIN 医学研究所
  • 北斯塔福德郡 NHS 信托大学医院
  • Olsberg 职业技术学院

学习资源

  • 了解超纯水
  • 白皮书
  • 水纯化技术
  • 实验室应用
  • 水中杂质
  • Latest Blog
  • Water Purity - Different Types of Pure Water
  • What is Clinical Laboratory Reagent Water (CLSI)?
  • What is Total Organic Carbon (TOC)?

© VWS (UK) Ltd. 以 ELGA®LabWater 的名义经营业务。2025- 保留所有权利
ELGA 是 Veolia 旗下全球实验室用水品牌。

备案号:沪ICP备20001142号-1

  • 隐私政策
  • 条款和条件
  • 全球法律合规
  • 专利
  • Trademarks
  • 页面操作员
  • 语言
    • Deutsch
    • English
    • Español
    • Français
    • Italiano
    • Português
    • 日本語
    • 中文
  • Veolia 其他站点
    • Veolia
    • Veolia Foundation
    • Veolia Water Technologies
Elga Veolia
TOP

© 2017 ELGA Veolia