跳转到主要内容
首页

Dedicated to discovery

  • 关于 ELGA
    • 关于 ELGA
    • 招贤纳士
    • 活动
  • 支持
    • 实验室规划
  • 联系信息
  • EN
  • DE
  • ES
  • FR
  • IT
  • PT
  • JA
  • EN-US
首页
  • 产品
    • PURELAB
      • PURELAB® Flex
      • PURELAB® Quest
      • PURELAB® Pharma Compliance
      • PURELAB® Chorus 1 Complete
      • PURELAB® Chorus 1
      • PURELAB® Chorus 2
      • PURELAB® Chorus 3
      • PURELAB® Chorus 2 +
    • CENTRA
      • CENTRA® R60/120
      • CENTRA® R200
      • CENTRA® RDS
    • MEDICA
      • MEDICA® 7/15
      • MEDICA® Pro-R & Pro-RE
      • MEDICA® R200
      • MEDICA® EDI 15/30
      • MEDICA® Pro-LPS
      • MEDICA® Pro EDI 60/120
      • MEDICA® BIOX
      • Hubgrade
    • BIOPURE
      • BIOPURE® 300/600
    • PURENERGY 30
    • ELGA 全产品系列
  • 应用
    • 一般实验室用水要求
    • 临床生物化学
    • 免疫化学
    • 分光光度测定法:
    • 原子光谱分析法
    • 微生物分析
    • 气相色谱分析法
    • 液相色谱
      • High Performance Liquid Chromatography
    • 电化学
    • 细胞培养
    • 质谱分析法
    • 遗传学
    • 高效液相色谱 (HPLC)
  • 水纯化技术
    • PureSure
    • 反渗透法
    • 活性碳
    • 电去离子法
    • 离子交换法
    • 紫外线照射法
    • 过滤
  • 水中杂质
    • 微生物和细菌
    • 微粒
    • 无机化合物
    • 有机化合物
    • 溶解气体
  • 知识
    • BROSCHÜREN
    • 博客
    • 案例分析
    • 超纯水
    • 白皮书
  • 如何购买?
  • 联系信息
Home
  • 联系信息
  • 产品
    • PURELAB
      • PURELAB® Flex
      • PURELAB® Quest
      • PURELAB® Pharma Compliance
      • PURELAB® Chorus 1 Complete
      • PURELAB® Chorus 1
      • PURELAB® Chorus 2
      • PURELAB® Chorus 3
      • PURELAB® Chorus 2 +
    • CENTRA
      • CENTRA® R60/120
      • CENTRA® R200
      • CENTRA® RDS
    • MEDICA
      • MEDICA® 7/15
      • MEDICA® Pro-R & Pro-RE
      • MEDICA® R200
      • MEDICA® EDI 15/30
      • MEDICA® Pro-LPS
      • MEDICA® Pro EDI 60/120
      • MEDICA® BIOX
      • Hubgrade
    • BIOPURE
      • BIOPURE® 300/600
    • PURENERGY 30
    • ELGA 全产品系列
  • 应用
    • 一般实验室用水要求
    • 临床生物化学
    • 免疫化学
    • 分光光度测定法:
    • 原子光谱分析法
    • 微生物分析
    • 气相色谱分析法
    • 液相色谱
      • High Performance Liquid Chromatography
    • 电化学
    • 细胞培养
    • 质谱分析法
    • 遗传学
    • 高效液相色谱 (HPLC)
  • 水纯化技术
    • PureSure
    • 反渗透法
    • 活性碳
    • 电去离子法
    • 离子交换法
    • 紫外线照射法
    • 过滤
  • 水中杂质
    • 微生物和细菌
    • 微粒
    • 无机化合物
    • 有机化合物
    • 溶解气体
  • 知识
    • BROSCHÜREN
    • 博客
    • 案例分析
    • 超纯水
    • 白皮书
  • 如何购买?
  • 联系信息
  • 关于 ELGA
    • 关于 ELGA
    • 招贤纳士
    • 活动
  • 支持
    • 实验室规划
  • 联系信息
  • EN
  • DE
  • ES
  • FR
  • IT
  • PT
  • JA
  • EN-US
  • 隐私政策
  • 条款和条件
  • 全球法律合规
  • 专利
  • Trademarks
  • 页面操作员
  • When did he die? Paper-based micro-fluidic devices for forensic sciences
Environment & Sustainability

When did he die? Paper-based micro-fluidic devices for forensic sciences

16 5月 2022
- by ELGA Editorial Team

When did he die? Paper-based micro-fluidic devices for forensic sciencesSimple tests to be carried out by people with minimum training outside laboratories are very much in vogue at the moment with the lateral flow tests for COVID 19 being used by millions of people. This is part of a general trend to enable “patients” to carry out tests at home to monitor their medical issues. WHO criteria for these devices are that they are “Affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free”. The technologies needed for such testing have found applications in other areas, such as forensics.

 

 

Legal medicine requires both highly sophisticated techniques and skilled personnel to solve analytical problems and simple techniques with fast procedures that allow analyses to be carried out outside the laboratory, in remote areas by unqualified personnel. The implementation of paper-based micro-fluidic analytical devices (mPADs) can meet the second of these requirements.

Advantages of mPADs:

Little or no sample preparation

Many samples put directly onto the mPADs

Very inexpensive to produce

Can be produced in resource-deficient and remote areas

Rapid

Require minute sample volumes

Easy to use and do not require skilled technicians

 

Forensic applications of mPADs which can be performed at the scene of the crime include:

Identification and/or quantification of a wide range of drugs such as amphetamines, cocaine, morphine and codeine (1)

Identification of substandard amounts of active pharmaceutical ingredients (APIs) in pharmaceutical drugs, in antibiotics and in herbal supplements (2)

Evaluation of gunshot residues (3)

Identification of explosives and chemical warfare agents like nerve agents (4)

Distinguishing between male and female human remains (5).

Research into further applications of mPADs continues. Musile et al.  at the University of Verona have recently (6) investigated various devices including mPADs to determine the estimated time since death at the scene of a crime. Traditional methods such as body cooling and stiffness tend to be subjective and reliant on experience. It has been found that the chemical content of the vitreous humour, contained in a sac behind the eyeball, changes after death and can be correlated with the post-mortem interval. Changes in ammonium content are relatively easy to measure using Nessler’s reagent and this is the basis of the proposed method (7).

The mPAD was prepared as shown.

Figure 1 Schematic of mPAD

The device was printed on a filter paper using a wax printer. It consists of a series of 5mm circles on either side of the device that perfectly overlap when the device is folded. After printing it was placed in an aluminium foil holder and heated at 150°C for 2.5 minutes.

5 µL of 10M NaOH were spotted on one of the internal sides and 5 µL of Nessler’s reagent spotted on the other side. The spots were allowed to dry and stapled together. 30 µL of the vitreous humour sample was spotted on side 1 and the device was turned to reveal side 2 after 30 seconds. A smart-phone camera was used to record the image of the sensing area.

The colour change due to the interaction between ammonia released by the action of NaOH on ammonium ions and the Nesseler’s reagent was measured in terms of “RGB distance” by using a simple and free smart-phone application. The correlation with time after death for a number of corpses is shown in figure 2. The optimized device showed a limit of detection of 0.4 mmol L−1, with between days precision less than 9.3% expressed as relative standard deviation, and accuracy between days from 94.5% to 104.5%. 

Figure 2 Correlation between ammonium content and post-mortem interval

 

Why choose ELGA Labwater?

Musile used ultrapure water from a PURELAB Chorus for all his pure water requirements including preparation of samples, reagents and standards. He ensured that there were no risks of contamination, a key requirement for any cutting edge research even when the work does not involve ultra-trace analyses.


 

References

  1. Musile, G., et al., The development of paper microfluidic devices for presumptive drug detection. Analytical Methods, 2015. 7(19): p. 8025-8033.
  2. Boehle, K.E., et al., based enzyme competition assay for detecting falsified β-lactam antibiotics. ACS sensors, 2018. 3(7): p. 1299-1307.
  3. Buking, S., et al., Microfluidic Paper-based Analytical Device for Quantification of Lead Using Reaction Band-length for Identification of Bullet Hole and Its Potential for Estimating Firing Distance. Anal Sci, 2018. 34(1): p. 83-89.
  4. Pardasani, D., et al., μ-PADs for detection of chemical warfare agents. Analyst, 2012. 137(23): p. 5648-5653
  5. Azuaje-Hualde, E., et al., Naked eye Y amelogenin gene fragment detection using DNAzymes on a paper-based device. Analytica Chimica Acta, 2020. 1123: p. 1-8
  6. Musile G., et al., Paper-based microfluidic devices: On-site tools for crime scene investigation. TrAC Trends in Analytical Chemistry Volume 143, October 2021, 116406 https://doi.org/10.1016/j.trac.2021.116406
  7. Musile, G., et al., Thanatochemistry at the crime scene: a microfluidic paper-based device for ammonium analysis in the vitreous humor. Analytica Chimica Acta, 2019. 1083: p. 150-156.
  • 留言咨询
  • 获取报价
  • 预订演示
  • 联系获认证的合作伙伴

留言咨询

在 ELGA LABWATER,我们希望能够为您提供有关我们实验室水纯化产品的精彩优惠和新闻动态。 我们将使用您提供的信息来预测您可能会感兴趣的内容。 我们会慎重处理您的数据,您可在此查阅我们的隐私政策。

ELGA LABWATER 的所有合作伙伴均已通过我们的审慎审核和认证。 为了对您的问题或查询进行回复,我们可能将您的联系详情转发给获认证的合作伙伴,由他们直接与您联系。 您可在此查看我们的获认证业务合作伙伴名单。

如果您希望接收来自 ELGA 及我们获认证合作伙伴的最新动态,请勾选下框: 在此.

是,我希望 ELGA LabWater 及其获认证合作伙伴基于我的联系详情为我发送其最新动态

获取报价

At ELGA LabWater, we have exciting offers and news about our products and services that we hope you’d like to hear about. We will use your information to predict what you might be interested in. We will treat your data with respect and you can find the details in our Privacy Policy.

ELGA LabWater works with a network of Approved Partners. In order to answer your questions or enquiries, we may pass your contact details to an Approved Partner, who may contact you directly. 

I'd like to receive updates from ELGA LabWater & ELGA Approved Partners based on my details.

预订演示

At ELGA LabWater, we have exciting offers and news about our products and services that we hope you’d like to hear about. We will use your information to predict what you might be interested in. We will treat your data with respect and you can find the details in our Privacy Policy.

ELGA LabWater works with a network of Approved Partners. In order to answer your questions or enquiries, we may pass your contact details to an Approved Partner, who may contact you directly. 

I'd like to receive updates from ELGA LabWater & ELGA Approved Partners based on my details.

Call us

Can't find what you are looking for?

Support Number
+44 (0)20 3567 7300
United Kingdom Sales
+44 (0)1628 879 704
United States of America Sales
+1 877-315-3542
France Sales
+33 1 40 83 65 00
China Sales
+86 400-616-8882

 

Elga LabWater 总部

ELGA Labwater英国总部

VWS(UK)Ltd.

Lane End Business Park,Lane End,High Wycombe

HP14 3BY,United Kingdom

ELGA Labwater中国总部

威立雅水处理技术(上海)有限公司

地址 : 上海市浦东新区张东路1761号5号楼
电话 : 021 - 38172288
传真 : 021 - 38172289
邮编 : 201210

案例研究

  • 雅培诊断
  • DASA 医学诊断
  • NeoDIN 医学研究所
  • 北斯塔福德郡 NHS 信托大学医院
  • Olsberg 职业技术学院

学习资源

  • 了解超纯水
  • 白皮书
  • 水纯化技术
  • 实验室应用
  • 水中杂质
  • Latest Blog
  • Water Purity - Different Types of Pure Water
  • What is Clinical Laboratory Reagent Water (CLSI)?
  • What is Total Organic Carbon (TOC)?

© VWS (UK) Ltd. 以 ELGA®LabWater 的名义经营业务。2024- 保留所有权利
ELGA 是 Veolia 旗下全球实验室用水品牌。

  • 隐私政策
  • 条款和条件
  • 全球法律合规
  • 专利
  • Trademarks
  • 页面操作员
  • 语言
    • Deutsch
    • English
    • Español
    • Français
    • Italiano
    • Português
    • 日本語
    • 中文
  • Veolia 其他站点
    • Veolia
    • Veolia Foundation
    • Veolia Water Technologies
Elga Veolia
TOP

© 2017 ELGA Veolia